
1 Macintosh Common LISP

Macintosh Common LISP
Michael S. Engber

The Institute for the Learning Sciences
Northwestern University

Abstract:
Macintosh Common LISP (MCL) is a powerful development environment which is often overlooked by
Macintosh programmers. This paper will show why you should consider using MCL and explore some of the
ways it can enhance your productivity. Prior LISP or MCL experience is not assumed.

This paper is aimed at the typical Mac developer
who uses C or Pascal. I'm going to try to avoid
arguing the general merits of LISP versus other
programming languages. There is already plenty
written on this topic. Instead, this paper will
emphasize aspects of MCL and LISP most relevant
to Mac development.

Languages are a religious issue among
programmers and opinions about LISP are even
more polarized than most. So I'd like to apologize
in advance for the editorial and first person
comments, but one of the purposes of this paper is
to get you to overcome any prejudice you have and
take a closer look at Macintosh Common LISP. I
could present just the cold facts, but that's not
likely to be any more informative than reading the
manual.

“LISP, doesn't that stand for Lots of Infernal
Stupid Parentheses?”

If you're like most programmers, you probably
regard LISP as a toy language, something you
used years ago to do a few AI assignments. You
were probably fluent in Pascal or C at the time, so
LISP was an obstacle which made otherwise
simple programs more difficult. That was certainly
my experience. At the University of Wisconsin, we
had a cluster of thirty or so Xerox Dandelions
whose CRTs put out enough heat to keep the lab at
90 degrees in the dead of winter. Apart from Phys
Ed, Intro to AI was the only course which required
changing into a t-shirt and shorts. Ignoring the
physical environment, just the simple act of
logging in took forever, using the editor was
difficult at best, and as for saving your files: don't
even ask.

So, if you already have a bad taste in your mouth
from LISP, let me start by assuring you that MCL is
very easy to use. A novice can write "hello,
world" faster in MCL than any other Mac
development environment, even THINK Pascal. All
you have to do is type (print "hello, world")

and hit return. There are no libraries to include, no
compilation scripts to run, you just type in your
code and let MCL evaluate it.

On the surface, the editor looks pretty much like
any other Mac text editor. In addition, it has an
addictive code formatting command, an EMACS
mode for EMACS fans, programming hooks from
LISP so you can customize it to do anything you
please, and a variety of LISP specific niceties. The
compiler is editor aware, allowing you to select a
section of code and execute it with a keystroke.
MCL provides a variety of development tools
including a stepper to let you execute your code
one line at a time, and a backtrace tool that lets
you explore the LISP stack (annotated and
readable – not MacsBug style) after an error
occurs.

MCL comes with an object library that supports
the standard user interface elements. It offers all
of the familiar benefits of object oriented user
interface code. I'll forego the gratuitous examples
of how to put up a dialog box, attach an action to a
menu, or customize a dialog item. Given the
widespread use of MacApp, I don't think the
details of how you do this in MCL will be very
enlightening.

Before going on, I'd like to tackle that classic LISP
objection.

“Isn't LISP slow?”

First, LISP is not an interpreted language by
definition. LISP can be compiled into efficient
code. That's how MCL normally evaluates
expressions. It compiles the expression and then
executes the compiled code. This process is so fast
that you'll probably think it's interpreting the
expression.

Second, this question really needs to be directed
at a particular LISP implementation rather than at
LISP in general. It's true that there are aspects of
LISP (dynamic linking, for instance) that introduce
runtime overhead you don't have in C or Pascal,

Macintosh Common LISP 1

2 Macintosh Common LISP
but the actual effect is less than most people
imagine.

Macintosh Common LISP 2

3 Macintosh Common LISP
It's almost pointless to talk about speed without
reference to a particular piece of code or
algorithm. In addition, speed-critical sections of
code comprise only a small fraction of most
applications. I wish I could end the discussion here
by just saying that MCL is generally fast enough to
get the job done, but I don't imagine the skeptics
will be satisfied unless I say more.

I'm going to try to divide and conquer the issue by
addressing it in three parts: the user interface, the
development cycle, and general execution speed.
I'll attempt to make some meaningful
generalizations about the first two and I'll wave my
hands a bit at the third.

User Interface Speed
A user's impression of speed is strongly influenced
by the user interface. Does it scroll fast? Do
buttons highlight immediately when hit? Does
dragging keep up with the mouse? Fortunately,
this paper is focused on Mac programming, so I
can also argue that this is what most of your code
is devoted to.

MCL definitely excels when it comes to writing
user interface code. I’ve implemented a variety of
widgets and graphic effects in MCL including:
PICT buttons, draggable dialog items, image
dissolves, animation, on-screen video, and even an
MDEF. In fact, MCL's own user interface is written
using MCL's object library. Speed is not a problem.
No one is going to be saying, “Boy, these dialog
items take forever to draw,” or “These buttons are
sure sluggish.”

This should come as no surprise since the ToolBox,
especially QuickDraw, does most of the work.
However, even the simple act of pressing a button
involves more than just ToolBox calls. MCL detects
the mouse down event and determines which
window object should handle it. The window object
has to determine which of its sub-views was hit.
Views can be nested so this step recurs until we
bottom out at the dialog item. The dialog item then
highlights itself and begins tracking the mouse.
It's important to point out that MCL's object
system is implemented efficiently enough not to
interfere with performance.

Development Cycle Speed
The speed of the compile/link/run cycle is
important in evaluating a development
environment. This is the biggest advantage that
the THINK compilers have over MPW and
probably one of the bigger complaints among
MPW users. With dynamic linking, MCL excels in

this area. The bigger the project, the more
pronounced MCL's advantage becomes. The ability
to recompile just the function you changed is hard
to beat.

For developers, this will turn out to be biggest
advantage of using MCL. The effect has to be seen
to be believed. This is discussed further in the
section on dynamic linking.

General Execution Speed
The best I can do is assert that MCL is fast enough
for most purposes. If you're doing computationally
intensive stuff, there's bound to be some code that
just won't go as fast as you want. Probably the
same code you find yourself wanting to hand code
in assembly language.

Keep in mind that it's easier for novices to write
inefficient code in LISP than in other languages.
What I mean by inefficient is more serious than
just calculating the same value twice; I mean
turning an O(N) algorithm into an O(N2) algorithm
(in time or space). This is hard to illustrate without
getting into the details of LISP, but if you come up
with an example of something that's really fast in
C, yet your LISP version is slow as molasses, odds
are it's the way you implemented it in LISP, not the
LISP compiler.

Currently, MCL is slow dealing with double floats.
This is a black mark if you’re doing high-precision
numerical analysis. This is strictly an
implementation issue, not something inherent in
LISP. It's reasonable to expect improvement in
future releases.

Before you can really say anything definitive on
speed, you have to try out MCL for your particular
needs. In general, I think you'll be pleasantly
surprised.

What LISP/MCL/CLOS offers over more
traditional languages

Dynamic Linking

Many programmers have a hard time
understanding what the big deal is about dynamic
linking. “Sure, there's this new thing from Apple
called Dinker. It lets you do dynamic linking of
MacApp classes, but doesn't that just make it
easier to distribute optional code modules for your
product? Big deal.”

In MCL, dynamic linking means being able to
modify and add code continuously, even while your

Macintosh Common LISP 3

4 Macintosh Common LISP
code is running. Say you're testing your program,
you pull down a menu and it doesn't do what you
expect. Maybe the code executed is totally bogus
and generates an error. You locate and edit the
function

Macintosh Common LISP 4

5 Macintosh Common LISP
associated with that menu item's action. You hit
the enter key to recompile that one function. The
compilation only takes a second. Then you try the
menu again. Notice that your program has
continued to run the whole time. This is the
development cycle in MCL – you test and repair as
you go along.

Dynamic linking encourages changing programs in
small increments, testing each change before
going on. In theory, that's how you're supposed to
develop software. The long compile/link/run
turnaround time in most development
environments discourages this, especially when
the program gets big.

For example, the above menu scenario played out
using MacApp and C++ would have taken minutes
instead of seconds.

I don't think you can fully appreciate dynamic
linking until you use it. If you've written scripts in
HyperCard you've had a taste of what dynamic
linking offers. The ease with which you can try
code out is very addicting. Once you get used to it,
you won't want to go back.

Macros

In LISP, macros are far more powerful than
#define is in C. Their syntax is much richer and
you have the full LISP language available at macro
expansion time.

As a common example from Mac programming,
consider changing the drawing state of the current
port, doing some drawing, and restoring the
drawing state. It's pretty simple to do, but it
clutters up your code and it's easy to make a
mistake. Using macros improves your code's
legibility and reliability with no cost at runtime.

Here are two simple examples. The first executes
its body with the clip region temporarily changed.
The second temporarily alters the pen state.

(with-clip-rgn some-rgn
statement1
statement2
…)

(with-text-state (:txMode #$srcBic
:txFace #$italic)

statement1
statement2)

(let* ((#:g210 (%setf-macptr (%null-ptr)
(ccl::%getport))))
;get the current port

(declare (dynamic-extent #:g210))
(declare (type macptr #:g210))
(let ((#:g212 (pref

#:g210 :grafport.txface))
;save current text face

(#:g213 (pref
#:g210 :grafport.txmode)))
;save current text mode

(unwind-protect
(progn

(require-trap traps:_textface
traps::$italic)
;set text face

(require-trap traps:_textmode
traps::$srcbic)
;set text mode

statement1
;do text drawing

statement2)
;do more text drawing

(require-trap traps:_textface
#:g212) ;restore text face

(require-trap traps:_textmode
#:g213)))) ;restore text mode
Figure 1 - Expansion of with-text-state Macro

This second form expands into the code shown in
Figure 1. It looks nasty, but this essentially the
same code you'd have to write in any language. In
LISP you never see this mess unless you choose to
expand the macro. In addition, there's no way to
forget one of the steps. It's also worth pointing out
that with-text-state accepts keywords for text
font and size, but since they weren't used in this
case, code wasn't generated to save and restore
them.

Here's a brief list of some more interesting with-
xxx macros along with the changes they
temporarily affect.

with-locked-GWorld
Locks the specified GWorld's pixels.

with-purgeable-resource
Loads the specified resource and makes it non-
purgeable.

without-res-load
Turns resource loading off.

with-QDProc
Installs custom QuickDraw bottlenecks

with-res-file
Makes the specified resource file current.

Macintosh Common LISP 5

6 Macintosh Common LISP
Takes keyword options to specify what to do in
special cases like: file isn't open, file doesn't
exist, file doesn't have a resource fork.

Macintosh Common LISP 6

7 Macintosh Common LISP
Error Cleanup

The unwind-protect LISP form allows you to
guarantee a certain section of code will execute,
even if an error occurs. This is useful for all sorts
of things like ensuring a file will be closed,
restoring the current port, disposing a handle.
Most of the with-xxx macros previously presented
expand into unwind-protect forms to ensure the
changes they make will be undone. A typical use
might be to ensure the disposal of a temporarily
created region.

(let ((rgn (#_NewRgn))
(unwind-protect

(progn
;misc rgn calculations
(#_FrameRgn rgn))

(#_DisposeRgn rgn))
Multiple Inheritance

I know there are those who believe multiple
inheritance is as evil as using goto statements, but
I disagree. Not having it sometimes leads to
clumsy and awkward class design. MacApp ended
up introducing adorners to view drawing because
it didn't have multiple inheritance to take care of
the problem properly. There are times when
multiple inheritance is the most direct and elegant
solution.

For example, in MCL I have a class that handles
dragging a dialog item around. If I want to make a
draggable button, I create a dialog item that
inherits from button and draggable. If I want to
make an icon draggable, I create one that inherits
from icon and draggable. No extra code is written
apart from specifying draggable in their class
inheritance lists. Without multiple inheritance you
end up writing a special dragging method for each
dialog item class. Isn't one of the points of object
oriented programming to avoid duplicating code?

At this point someone will point out that I could
put all the dragging code in the view which
contains the items. I would argue that each class
should handle dragging itself so it can easily
customize the way it drags. This type of back and
forth can continue endlessly. Let me end it here by
saying that the Common LISP Object System
(CLOS) supports multiple inheritance. I find it
simplifies my code. If you don't want to use it, you
don't have to.

Modest Development System Requirement

Since MCL applications are a bit large in terms of

disk and memory space, you might mistakenly
assume MCL itself is a major resource hog. MCL
works adequately in its default 3M memory
partition. At first glance, this may not sound
modest, but remember there are no additional
memory requirements. The partition is shared
among the compiler, editor, debugger, and your
code. As for disk space, the MCL compiler and
libraries take up under 5M of disk space. This is
about the same as Think C and significantly less
than MPW. It’s feasible to use MCL on a 4M
PowerBook 100. The same can’t be said for
MacApp which wouldn’t even fit on the 20M hard
drive.

Embedded Languages

Many of the high-end spreadsheets,
communication packages, and word processors
provide pseudo-programming languages for their
“power users.” Most of these languages are poorly
designed and a nightmare to use. Ever try using
Excel's macro language? Applications written in
LISP get the full LISP language and all its
debugging tools for free. On other (non-Macintosh)
platforms there are popular LISP-based products,
AutoCad and Interleaf, which take advantage of
this.

If you don't think your users will like LISP's
syntax, it's easy to write your own language using
LISP. You just have to do enough to translate the
user's source into LISP and you're done. Language
design is one of the classic applications for LISP,
so it has many features that make this easy to do.

Bignums, Fractions, and Complex Numbers

In addition to the numerical types you find in other
languages, LISP provides an assortment of more
exotic types. Bignums are integers which can be of
any size. Fractions are rational numbers like 2/5
(i.e., no round off error, 7 * 1/7 equals 1 exactly).
LISP even supports complex numbers. Needless to
say, all the standard library functions operate
correctly on any type of number they're passed.

I know I said I wouldn't get into issues not directly
related to Mac programming, but MCL has a really
impressive implementation of these types. It's hard
to resist showing off MCL computing 1000
factorial. Consider this simple definition of
factorial:

(defun fact (x)
(if (<= x 1) 1 (* x (fact (- x

1)))))

Macintosh Common LISP 7

8 Macintosh Common LISP
It computes 1000!, a 2568 digit number, in 1.2
seconds on an SE/30 and less than half a second
on a IIfx.1

You might ask, “Of what practical value is this?”
Try implementing the RSA public key encryption
algorithm. You need to do computations like
raising xy mod z where x, y, and z are 100 digit
numbers. I used MCL to implement RSA along
with the Solovay and Strassen prime test so I
could generate 100 digit primes to use as keys.
The point is, if your job was to implement RSA, I'd
have the entire algorithm up and running in MCL
long before you even got two 100 digit numbers
multiplied together in C.

Is MCL of any practical use to developers?

I see three ways Mac developers can view MCL; as
a delivery platform, as a prototyping environment,
and as a ToolBox exploration environment.

MCL as a Delivery Platform

Yes, it's feasible to deliver software written in
MCL, but don't count on using it to write 50K
utilities. MCL is suitable for delivering large
applications. It creates stand-alone applications by
dumping an image of LISP memory to disk. These
applications are big, starting at 1.5M and
requiring a 2M RAM partition to run.

As your code grows in size, the application size
doesn't really increase that fast. A typical LISP
application might take up 4M on disk. However,
RAM needs can go up more quickly. It's hard to
make meaningful generalizations about RAM
requirements. They are driven by application
specific things like how many GWorlds you use and
how many PICT handles you keep around, but it's
not too unusual for a good-sized LISP application
to require a 4M or 6M partition.

Before you hurl, take a look at the sizes and
memory requirements of some of the high-end
graphics programs and word processors. You'll see
that MCL's requirements are comparable.

Don't make the mistake of extrapolating that your
application will quickly grow to requiring 100M of
RAM. Once you pay the initial overhead, you're
over the hump. Doubling the functionality of your
program doesn't double the size or memory
requirements. All that user interface code is
already there and can be reused. If this argument
sounds familiar, you've probably heard it given in
the early days of MacApp when people complained
about its overhead.

MCL as a Prototyping Environment

I'm sure the term prototyping strikes fear into the
hearts of many programmers. It probably brings
back memories of writing a quick demo in
HyperCard only to find yourself hacking it into a
bigger and bigger mess because there was never
enough time to go back and do a total rewrite in
Pascal.

With MCL you're not going to run into the same
roadblocks you do with HyperTalk. LISP is a fully
developed programming language; you won't find
yourself wishing for data structures. MCL gives
you access to the ToolBox, so you won't have to
extend the language with XCMDs. You can take
your prototypes as far as you want, even turning it
into a finished product.

I won't claim MCL is as easy to use as HyperCard,
but a novice LISP coder will be able to get working
dialog boxes and menus up in an afternoon. He
won't have to learn MPW, he won't have to know
what resources are, and he won't have to know
what a handle is.

MCL as a ToolBox Exploration Environment

I find the best way to read "Inside Macintosh" is
with MCL up and running so I can try things out as
I go along. MCL lets you evaluate the ToolBox call
without having to build a supporting program.

Why is this such a big win? How many hours have
you wasted because you wrote a bunch of code
only to throw it out because a ToolBox call doesn't
work the way you thought it would? Sometimes it's
a poor description in "Inside Macintosh," other

1In case you're interested, 1000! is:
4023872600770937735437024339230039857193748642107146325437999104299385123986290205920442084869694048004799886101971960586316668729948085589013238296699445909974245040870737599
1882362772718873251977950595099527612087497546249704360141827809464649629105639388743788648733711918104582578364784997701247663288983595573543251318532395846307555740911426241
7474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168
7476096758713483120254785893207671691324484262361314125087802080002616831510273418279777047846358681701643650241536913982812648102130927612448963599287051149649754199093422215
6683257208082133318611681155361583654698404670897560290095053761647584772842188967964624494516076535340819890138544248798495995331910172335555660213945039973628075013783761530
7127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780
8898939645182632436716167621791689097799119037540312746222899880051954444142820121873617459926429565817466283029555702990243241531816172104658320367869061172601587835207515162
8422554026517048330422614397428693306169089796848259012545832716822645806652676995865268227280707578139185817888965220816434834482599326604336766017699961283186078838615027946
5955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774
0114133469627154228458623773875382304838656889764619273838149001407673104466402598994902222217659043399018860185665264850617997023561938970178600408118897299183110211712298459
0164192106888438712185564612496079872290851929681937238864261483965738229112312502418664935314397013742853192664987533721894069428143411852015801412334482801505139969429015348
3077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994
8717012445164612603790293091208890869420285106401821543994571568059418727489980942547421735824010636774045957417851608292301353580818400969963725242305608559037006242712434169
09004153690105933983835777939410970027753472000
00

Macintosh Common LISP 8

9 Macintosh Common LISP
times the ToolBox is so complex that it defies
written description. The solution is to try things
out, but because it's such a pain, most
programmers don't. You have to create a project,
write code to put up a window, make your ToolBox
call, convert your results

Macintosh Common LISP 9

10 Macintosh Common LISP
into strings, and write code to print the strings. In
MCL, all you have to do is make the call and use
standard LISP i/o primitives to print the results.

Here's an example. Have you ever look at the
description of PBGetVInfo? It's nasty. If
ioVolIndex is positive, it does one thing; if it's
zero, it does another; if it's negative, it does yet
another. By the time you're done reading it, you
can't even remember what you originally set out to
do. In MCL you can try the call with three different
values for ioVolIndex in less time than it takes to
reread the description. Better yet, you can be
confident you got it right. You won't be saying to
yourself, “I'll try this for now, but if my code
doesn't work I'll have to remember to come back
here again.” Or, “Should I take the time to make
sure this call works in all cases? Nah.”

Using MCL to explore the ToolBox

Of the three uses I've presented, ToolBox
exploration is the only thing I can demonstrate
quickly. Certainly, the biggest gains to be made
from MCL come from using it as your
implementation language, but it would be tough to
demonstrate that in a short example and without
first teaching you some LISP.

So in this section, I'll scratch the surface of MCL's
power by showing how easy it is to access the
ToolBox. Even if this is all you ever use MCL for, it
will be well worth the price. The examples I'll
present are taken from the development of a
freeware utility, Save A BNDL, which I recently
released. Save A BNDL was prototyped in MCL
and then translated to Think C for compilation into
a 15K application.

Save A BNDL installs a file's BNDL information into
the Finder without requiring rebuilding the
desktop or rebooting. It uses the desktop
database, the process manager, System 7 file
manager calls, and apple events. These are all
things I'd never done before, so of course I
immediately got MCL out and tried them.

The code that follows is what I used to explore the
desktop database. The code is initially

straightforward, but one quickly realizes there are
far more subtleties to the desktop database than
“Inside Macintosh” would lead you to believe. MCL
made this exploration process much less painful
than it might have been.

But first, some basic syntax

Even if you don't know LISP, you should be able to
get the gist of this example code. In fact, knowing
LISP might even be a hindrance since this code
uses MCL extensions to access the ToolBox. Here
are a few things you should know.

• LISP symbols are not limited to alpha-numeric
characters as they are in most languages. For
example, %stack-block is a legal function
name.

• Function calls are made using the syntax:
(function-name arg1 arg2 …)

• Trap calls look like function calls, but they begin
with #_.

• LISP data is not in the same format as ToolBox
data. The fact that LISP integers can be 100
digits long may have tipped you off that they
aren't simply stored as 32 bits. This means that
data passed to the ToolBox must be allocated
and retrieved in a special way. Table 1 covers
what you need to know for the purposes of this
paper.

example

(rlet ((pb :DTPBRec
 :ioNamePtr (%null-ptr)
 :ioVRefNum 0))

rlet declares and initializes a Pascal style record. The
example declares
fields.

(%stack-block ((buf 200)) %stack-block
space on the stack for it. The example binds

(with-pstrs ((fn "HD:TeachText")) with-pstrs
example declares

(pref pb :DTPBRec.ioDTRefNum) pref references a field of a Pascal style record. The example
returns the

(%get-text buf 10) %get-text
specified bytes of memory as ASCII code. The example returns
a 10 character string created from the memory pointed to by
buf.

Table 1 - Access to ToolBox Data from MCL

Macintosh Common LISP 10

11 Macintosh Common LISP
And now, for the code

Start by using PBDTGetPath to get the reference number of the desktop database.

(rlet ((pb :DTPBRec
 :ioNamePtr (%null-ptr)
 :ioVRefNum 0))
 (#_PBDTGetPath pb)
 (pref pb :DTPBRec.ioDTRefNum))

→ 754

Create a global variable for the desktop database reference number so we can refer to it symbolically.

(defvar *DTDB-refNum* 754)
→ *DTDB-refNum*

Try out PBDTGetComment which returns the Finder comment associated with a file.

(with-pstrs ((fn "HD:ResEdit"))
 (%stack-block ((buf 200))
 (rlet ((pb :DTPBRec
 :ioNamePtr fn
 :ioDTRefNum *DTDB-refNum*
 :ioDTBuffer buf
 :ioDirID 0))
 (when (zerop (#_PBDTGetComment pb))
 (%get-text buf (pref pb :DTPBRec.ioDTActCount))))))

→ "wow! what a useful comment"

A quick check with the Finder's Get Info command verifies it's the correct value.

.

Macintosh Common LISP 11

12 Macintosh Common LISP

PBDTGetIconInfo returns the file type, icon type, and icon size of icons entered in the desktop database for
the specified creator, in this case ResEdit. It's an indexed call. You make it repeatedly until it returns
afpItemNotFound.

(rlet ((pb :DTPBRec
 :ioDTRefNum *DTDB-refNum*
 :ioIndex 1
 :ioTagInfo 0
 :ioDTReqCount 1024
 :ioFileCreator "RSED"))
 ;format is roughly equivalent to a printf in C
 (format t "~%~2@a: ~s ~3@s ~4@s~%" #\# 'type 'icon 'size)
 (loop
 ;break on error or when afpItemNotFound is returned
 (unless (zerop (#_PBDTGetIconInfo pb)) (return (pref pb :DTPBRec.ioResult)))
 (format t "~2@s: ~s ~3@s ~4@s~%"
 (pref pb :DTPBRec.ioIndex)
 (symbol-name (pref pb :DTPBRec.ioFileType))
 (pref pb :DTPBRec.ioIconType)
 (pref pb :DTPBRec.ioDTActCount))
 (incf (pref pb :DTPBRec.ioIndex))))

→
 #: type icon size all the icons associated with ResEdit
 1: "APPL" 1 256
 2: "APPL" 2 512
 3: "APPL" 3 1024
 4: "APPL" 4 64
 5: "APPL" 5 128
 6: "APPL" 6 256
 7: "RSRC" 1 256
 8: "RSRC" 2 512
 9: "RSRC" 3 1024
10: "RSRC" 4 64
11: "RSRC" 5 128
12: "RSRC" 6 256
13: "paul" -1 256 ← what's this? 2
14: "rsrc" 1 256
15: "rsrc" 2 512
16: "rsrc" 3 1024
17: "rsrc" 4 64
18: "rsrc" 5 128
19: "rsrc" 6 256
20: "ssrc" 1 256 ← stationary document icons
21: "ssrc" 2 512
22: "ssrc" 3 1024
23: "ssrc" 4 64
24: "ssrc" 5 128
25: "ssrc" 6 256
-5012 ← afpItemNotFound

2Notice the undocumented type of icon associated with paul files. It turns out that most applications have an entry for
this mysterious paul icon in the desktop database, but none of them seem to have it in their BNDL resource. How odd.

Macintosh Common LISP 12

13 Macintosh Common LISP

Closer inspection reveals that the paul icon isn't actually an icon at all. It's used by the Finder to store the
file types which can be dragged and dropped onto the application. This code uses PBDTGetIcon to retrieve
the raw icon data. It then prints it out as a text string.3

(%stack-block ((buf #$kLarge8BitIconSize))
 (rlet ((pb :DTPBRec
 :ioDTRefNum *DTDB-refNum*
 :ioTagInfo 0
 :ioDTBuffer buf
 :ioDTReqCount #$kLarge8BitIconSize
 :ioIconType -1
 :ioFileCreator "RSED"
 :ioFileType "paul"
))
 (when (zerop (#_PBDTGetIcon pb))
 (print (pref pb :DTPBRec.ioDTActCount))
 (%get-text buf (pref pb :DTPBRec.ioDTActCount)))))

→
 256
"rsrcRSRC****" ← This is actually a 256 character string. The 244 trailing null characters aren’t shown.

As you can see, it's pretty simple to access the
ToolBox; no windows to create, no managers to
initialize, no make-files to write. When code is
evaluated, the resulting value is printed to the
Listener window, a standard part of the MCL
environment. The print function outputs to the
Listener by default.
MCL played a pivotal role in the development of
Save A BNDL. First, I used it to learn about the
desktop database, including the existence of the
undocumented paul icon. Then, I used it to figure
out how to kill and restart the Finder using Apple
Events and the Process Manager. Before a single
line of C code was written, I had already solved
most of the interesting problems.

“If MCL is totally awesome, why isn't everyone
using it?”

Arguments against using MCL are usually along
the lines of: “No one else is using MCL;” “LISP
might be too slow;” “I already have a big
investment in C;” “Why should I learn something
new?” Do these objections sound familiar? They
sound a lot like the complaints the PC community
raised when the Macintosh first came out. They

are all pretenses for avoiding change.

If you're still not sold on MCL, remember that I've
kept this paper focused on the benefits of MCL
directly related to Mac programming. There are
also plenty of reasons to choose LISP over
traditional programming languages. For a set of
relevant articles, see the September 1991 issue of
the Communications of the ACM. It has a special
section on LISP and CLOS.

There's been a lot of talk about Object Oriented
Dynamically Linked languages (OODLs) being the
wave of the future. Object oriented languages have
already changed the face of Mac development.
Dynamic languages have the potential to
completely revolutionize it. MCL is not some
promise of the future. It's here now, it works, and
you can benefit from it.

References and Suggested Reading

Apple Computer, "Macintosh Common LISP 2.0
Reference - Draft." 1991, Apple Computer.

Comes with MCL (available from APDA). I haven't seen
the final version yet. The 2.0b1 draft has plenty of
errors and omissions. MCL's Apropos tool goes a long
way toward making up for the deficiencies.

3The paul icon is actually an array of OSType's. Notice it contains an entry for files of type ****. This is a wild card type
you can specify in a BNDL resource if you want to accept files of any type. Other wild card types are: fold to accept
folders, disk to accept disks, and ???? to accept applications. This last type isn't documented, but without it there's no
way to only accept APPL files (recall the APPL entry in a BNDL specifies the application's icon).

Macintosh Common LISP 13

14 Macintosh Common LISP
Card, Orson Scott, "Ender's Game." 1991, Tom

Doherty and Associates.
Very entertaining. Even people who don't normally like
science fiction will enjoy this one.

Engber, Michael S., The Sound Manager with
LISP. MacTutor, March 1991, pp. 84-89.

An informative and well written article, if I must say so
myself. It covers the basics of ToolBox access and
illustrates them by using the Sound Manager. It was
written in the days of MACL 1.32, so parts are dated.

Keene, Sonya E., "Object-Oriented Programming in
Common LISP." 1989, Addison Wesley.

A very complete and digestible introduction to CLOS. It
can be read straight through (if you ignore that
extended example on the lock class).

Kleiman, Ruben, The Power of Macintosh Common
LISP, d e v e l o p, Winter 1991, pp. 85-113.

Covers the basic MCL environment and object system
in detail. Lots of example code.

Norvig, Peter, "Paradigms of Artificial Intelligence
Programming: Case Studies in Common Lisp"
1992, Morgan Kaufman Publishers, Inc.

Common Lisp from a to z, with lots of good examples
and two chapters on efficiency issues.

Steele, Guy L., "Common LISP - The Language"
2nd edition. 1990, Digital Press.

Comprehensive, precise, essential, very dense. This is
one of those books whose prerequisite is a solid
understanding of the subject it covers. Not a tutorial.

Sherwood T.K. and Wilcox F.C., "Sabotage of
Gasoline Engines." 1946, Office of Scientific
Research .

A definite must.

Wilensky, Robert, "Common LISPcraft." 1984, WW
Norton and Company.

If you already know something about programming and
you're looking for a book you can sit down, read, and
come away with the impression, albeit mistaken, that
you know something about LISP, this is it. It has good,
readable, explanations of the fundamentals. Appendix A
is a good Common LISP reference, although not as
encyclopedic as Steele. When you outgrow Wilensky,
you'll be ready for Steele.

Acknowledgments

I’d like to thank the following individuals for their
input: Jorn Barger, Mark Chung, Martha Engber,
Josh Golub, Dan Halabe, Alice Hartley, Mike
Korcuska, Rich Lynch, David Moon, David Neves,
Tamar Offer, Chris Riesbeck, Bill St. Clair, and
Steve Strassmann.

The Institute for the Learning Sciences was
established in 1989 with the support of Andersen
Consulting, part of The Arthur Andersen
Worldwide Organization. The Institute receives
additional funding from Ameritech (an Institute
Partner), IBM, the Defense Advanced Research
Projects Agency, the Air Force Office of Scientific
Research, and the Office of Naval Research.

Macintosh Common LISP 14

